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ON THE THEORY OF THE GYROPENDULUM* 

Iu. N. CHELNOKOV 

Precession equations of motion of the gyropendulum relative to the accompanying 
Darboux trihedron /l/ and, also, precession equations of the gyropendulum motion 
relative to the geographic trihedron, considered in /2,3/, are given a kinematic in- 
terpretation. Linear differential equations that define the gyropendulum behavior 
at finite deflection angles of the rotor axis from the vertical are established for 
arbitrary motions of its suspension point over the surface of the Earth. These equa- 
tions have the form of kinematic equations of a solid body spherical motion in terms 
of RodAgues-Hamilton parameters, and in the case of stationary base they are in 
agreement with equations established in /4/. The Liapunov stability ot the gyro- 
pendulum equations in both the finite Euler-Krylov angles and in the Rodrigues 
-Hamilton parameters is proved. Particular cases of integrability in quadratures 
of the gyropendulum precession equations at finite angles are indicated. 

1. Let us consider the gyropendulum motion relative to the natural Darboux trihedron 
09y”z” with its vertex at the center of the Cardan universal suspension joint with its edge 
4" normal to the Earth surface and edge ti directed along the suspension center velocity 

vector v /1,5/. 
The input precession equations of motion of a gyropendulum for arbitrary motion of its 

suspension point over the Earth surface are of the form 

am,' - u(Pz + F,),Hov' = fz(P, + F,) (1.1) 

where o,', 04' are projections of the absolute angular velocity (0' of the system of coordinat- 
es OzYz with its origin at the Cardan suspension center on its sxes and axis 4 directed 
along the gyropendulum axis, H is the gyroscope intrinsic moment; P,,P, and F,,F, are 
projections of the resultant P of transfer inertia forces and of gravity force F (these 
forces pass through the system "inner ring-rotor" center of gravity) on the axesofthesystem 
of coordinates Ozyz, and a is the distance between the center of gravity and the coordinate 
origin 0. 

We determine the position of the coordinate system OzYz relative to the trihedron 
Or%%" by the angles a, $,v (Fig.1). Angles a and $ define the position of the gyropend- 

ulum rotor axis 4 relative to the trihedron OzoyozD. Below are given the cosines of angles 
between the axes of the coordinate system Ozyz and the edges of the trihedron O&'fsO 

so Y0 z” (1.2) 

2 cos~cosy sinasinf3cosy+ccsasiny -cosasin~cosy+sinaainy 

Y -cos@siny -ainasinBsinv+cosacosy cosasinfJsiny+sinaccsy 

4 sinfi -4inacosp cesace4b 

We denote by o the vector of angular velocity of the coordinate system Oryz rotation 
relative to the trihedron Ot“yOz". The projections o[(i=1,2,3) of this vector on the axes of 
the coordinate system Dx"yozo are defined by formulas 

o1 =a'+y'sinfi, 02== ~cosa-y*cosbsina, oQ = r sina + y'cosfi cosa (1.3) 

from which we obtain 

a' = o1 -tg fi(~~cosa - ti,sina), p = ozcosa + aJ4ina, y’ = (o,cosa - w,sina)/cos@ (1.4) 

We select the motion of the coordinate system OsYz with respect to coordinate Y so 
that the projection o', of vector 0' on the z -axis be determined by formula 

0'2 = a (P, + F,)iH (1.5) 

where P, and F, are projections of vectors F and F on the z-axis. The scalar relations 
(1.1) and (1.5) are then equivalent to the single vector relation 
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Fig.1 

for the projections 

CO’ = a (P i_ F) i H = a (F - mw)tH (1.6; 

where m is the over-all mass of the inner ring and rotor of 
the gyxopendulum, and w is the absolute acceleration of the 
gyropendulum suspension point /1,5/. 

The vector of relatiye angular velocity of rotation of 
the coordinate system osyz is o) = o' -a=, where w' is 
the absolute angular velocity of rotation of the trihedron 
09yY. Using formula (1.61 we obtain 

o = a (F - nw)/H - 0’ (1.7j 

Projecting the Left- and right-hand sides of the vector 
equality (1.7) on tits edges of the txihedron OX'Y~S~ and tak- 
ing into account exprsssfons for the projections of vectors 
F,w, and re" on the edges of the trihedron Oz'y":" /1,5/J, 

Ot of vector * we obtain 

where v is the velocity of the gyropendulum suspension point relative to the nonrotating 
sphere S with the same center and radius as the Earth, R is the Earth radius, and P is the 
radius of geodesic curvature of the gyropendufum suspension point trajectory, where thatpoint 
is located at a qiven instant of time, 

Formulas (1.8) and the first two equations of system (1.41 yield the equations of preces- 
sion motion of the 2 -axitp of the gyropendulum rotor relative to the Darboux trihedron for an 
arbitrary motion of its suspension point over the Zarth surface /1,5/ 

N (vR-'sina sin@ - w,cosasinp f ~c'co@) w Q f(F - m3R'1)cosc2sin@ - m (v’Cos@ + o,Usinasinfl)l (1.9) 

X@R'eosa + w,sina + g) = al(mv?R-' - F)sina - moovcos al 

Taking into account equality (1.8) we reduce the third equation of system (1.4) to the 
form 

which, after the determination of the unknown functions of time a -a(t) and 8 = p(t), enabl- 
es us to establish the law of variation of coordinate y -y(t) for which equality (1.5) and, 
coneequentl.y also, the vector equality (1.6) are valid. 

2. He attach to the system of coordinates OrPz a solid body D locating one of its 
points at the origin Q of the coordinates system Osyz. tit the body D effect a spherical 
motion at angular velocity 0 defined by formula (1.71 relative to the Darboux trihedron 
uxOyOzO. The kinematic equations of that motion are of the form (1.4). 

We introduce vector 9 of final turn which defines the position of body D relative to 
the trihedron OJ?F%', and denote the Rodrfgues- Hamilton parameters that correspond to the 
final turn vector ft by ;h,(i = O,i, 2, 3). Parameters b, are determined by the angles a, $.v 
in conformity with the known formulas /4/. To obtain formulas for angles a, fl, y in terms of 
the Rodrigues-Hamilton parameters A,, we define the expressions (1.2) in terms of para- 
meters hj in conformity with the formulas given in /6/ and obtain 

sin fl = 2 (A& + I&.,), tg a = 2 (h& - h,h,) f (?Lc? + haP - hzz - A,%) (2.1) 

tg y = 2 (l&a - I.$.*)/ (A." + h,% - h,P - A,') 

The kinematic equations of sphesfcal motion of body D that relate the Hodrfgues- 

Hamilton parameters and their derivativss to projections 0% of vector cg of the body relat- 

ive angular velocity on the axes of the coordinate system 0~'yY axe of the form /6,7/ 

23,; = - (o,h, + o.& t 0&3), 3J.; = o&, + c,h, - OS& (2.2) 

2h,' = 6& +- o,h, - o,h,, IX, = o,a, T w$, - o,a,, 

It was shown above that the dynamic equations (1.9) of the gyxopendulum precession mo- 
tion are equivalent to the first two kinematic equations (1.4) and formulas (1.8).Equations 
(1.4) are, in turn, equivalent to Eqs. (2.2), since both represent in different form the 
kinematic equations of spherical motion of one and the same body D. Hence, when 0i are 

specified by formulas (1.8), Eqs. (2.2) can be treated as equations of precession motion of 
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the gyropendulum rotor axis z relative to the Darboux trihedron. These equations, as well 

as Eqs. (1.9) are valid for any arbitrary motion of the gyropendulum suspension point over 
the Earth surface, provided the conditions stipulated in /1,5/ imposed On the forces acting 

on the gyropendulum are satisfied. 
For determining angles a and fi that define the position of the gyropendulum rotor axis 

C relative to the Darboux trihedron for arbitrary functions V(t) and oO(t) it is, thus, 
possible to solve four linear differential equations (2.2) instead of two essentially non- 

linear differential equations (1.91, by passing from parameters hj to angles a and 0 in 
conformity with the first two formulas (2.1). The third formula (2.1) makes it possible,after 
the determination of parameters A,, to establish the law of variation of angle y for which 
equalities (1.5) and (1.6) are valid. 

In the case of a fixed gyropendulum suspension point o0 = 0, v = 0. Rence 0, = 0, o* = 0, 
w* = -aFiH and Eqs. (2.2) assume the form of equations obtained in /4/ for a gyropendulum 

mounted on a fixed base on condition that the introduced there quantity h = o,'- a(Pz i- J'JIR 
is zero for the chosen law of motion of the coordinate system Ozyz with respect to angle 9. 

3. Let us show that there is an analogy between the gyropendulum precession equations 
and the equations of the basic problem of inertial navigation /5,8,9/. 

Let E'n'c' be a nonrotating coordinate system , and XYZ a system of coordinates attached 
to the stabilized platform. Orientation of the coordinate system XYZ relative to the tri- 
hedron &On'6 is defined by the angles*, -QJ.-xwhose meaning is explained in /5/. Condition- 
ally assuming the coordinate axes Z, y,C as nonrotating, we superpose theseontheaxes 6', E',v 
respectively. It follows from Fig.1 and the scheme of turns of the coordinate trihedron XYZ 
relative to E'$c* presented in /5/ that when the equalities 

a==%, B==v,v---Ip (3.1) 

are satisfied, the coordinate axes XaeolYo,zo coincide with axes 2, X,Y, respectively, and the 
projections 0,, Or, 02 of the absolute angular velocity of rotation of the trihedron XYZ 
about its own axis are defined by 

0. = -o*,oy = -oa,o* = -CC1 (3.2) 

From Eqs. (1.3) and equalities (3.1) and (3.2) we obtain equations 

- 9. COSX -$S'c08cp Sin x = ox, -m'Sinx + $'COS m' COSx = WY (3.3) 

- x' +- *'sin cp = oz 

which are the same as the equations of the basic problem of inertial navigation in terms of 
Euler-Krylov angles /5,8,9/. 

Liapunov stability of solutions of Eqs. (3.3) for any continuous functions a,, my, is1 was 
proved in /lo-14/. Equations (1.3) together with formulas (3.1) and (3.2) are equivalent to 
Eqs. (3.3). Equations (1.9) of the gyropendulum are obtained from Eqs. (1.3) as the result 
of their solution for the derivatives a'. fi', y' and the substitution of expressions (1.8), 
whose continuity is obvious, for oi. Consequently, the solutions of Eqs. (1.9) of the gyro- 
pendulum in terms of Euler-Krylov angles a and p are also Liapunov stable. 

The Rodrigues-Hamilton parameters l,(j = 0,1,2,3) that define the position of the co- 
ordinate system XYZ relative to E'~J'C are related to parameters hj by formulas 

I, = ?.O, 11 = -hp. 1, = A,, 1, = --h, (3.4) 

From equalities (3.2) and (3.4) and Eqs. (2.2) we obtain the equations 

21,' = -_(oxl, + O”l, + o,l,), 21,' = o,l, + O,Zt - o&J, (3.5) 

21,' = m,lcl - WA + @A 21; = o*zo +o,z,- o$& 

that coincide with the equations of the basic problem of inertial navigation in terms of the 
Rodrigues-Hamilton parameters /5/. 

In studies of inertial navigation /12,14-17/ another set of Rodrigues-Ramilton para- 
meters *j is used, as a rule, since it leads to simpler relations between parameters 
angles *,'m, x. The relation between parsmeters 

m, and 
11 and ml was established in /5/, where it 

was shown that the equations of the basic problem of inertial navigation in terms of para- 
meters mJ are of the same form as Eqs. (3.5) (With the substitution of ml for ZJ), 

The LiapnOV stability of solutions of Eqs. 
was proved in /12/. 

(3.5) for any continuous functions o~.o~,~~ 
Equations /2.2/ are equivalent to Eqs. (3.21, (3.4) and (3.5) when oi 

are defined by the continuous functions (1.8) , and are equations of the gyropendulum preces- 
sion in terms of the Rodrigues-Ramilton parameters. It is therefore , possible to conclude 
that Solutions of Eqs. (2.2) and (1.8) of the gyropendulum in terms of the Rodrigues-Hamilton 
parameters are Liapunov stable. 
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The established analogy between precession equations of the gyropendulum and the equa- 
tions of the basic problpm of inertial navigation enable us to state that the solutions of 
Sqs. (1.9) of th8 gyrop%ndulum in term% of Euler-Kxylov angles, as well as of Eqs. (2.2) arid 
(1.8) in terms of Rodrigues- Ksmilton parameters are Liapunov stable. One must, however,bear 
in mind that the values 

a* = 0, fi* = 0, y* = y* (t) (r*' = oa) 

of variables a, 6, y and the respective values 

h,* = co9 (y/2), i,* = h* = 0, AS* = sin (y*/2) 

of variables Zj for which the principal axis of the gyropendulum cOincid8S with tha vertical, 
are not particular solution of Eqs. (1.9) in terms of Euler-KKrylov angles and of Eqs. (2.2) 
and (1.8) in tarms of the Rodrigues-Hamilton parameters. Because of this, the conclusion on 
the Liapunov stability of equations solutions of the gyropendulum precession does not imply 
motion stability of the gyropendulum principal axis with respect to the vertical. This 
problem requires separate consideration. The problem of unambiguous determination of angles 
CL, 6. y in terms of the Rodriques-Hamilton parameters h, must, also, be considered. FOX 

this, the method described in /5/ should be used, taking into account that cc, fi, y mayassilme 
any values in the intervals (--n/2, n/2), (--n/2, n/2), and (O&r), respectively. 

Structure of the general solution of system (2.2) is given in /5,7,16/. The solutions 
of Eqs. (2.2) are also known for particular cases of specification of vector 0, for instance, 
for vector a, whose direction in the coordinate system OJ?F‘%~ is constant, and for vector M 
effecting a conical motion. Hence for the establishment of the structure of the general solu- 
tion of system (1.9), as well as for the cases of specifications of the angular velocity vec- 
tor 8 it is necessary to use formulas (2.1). 

4. Let us derive the linear differantial equations defining the precession motion of a 
gyropendulum relative to the geographical trihedron /2,3/ in finite angles. 

Let Ox+y+z+ be a geographic system of coordinates whose 
axis Oz+ coincides with Os"-axis of the Darboux trihedron 
OzoyotD and is directed along the terrestrial sphere radius, 
and the OX*-and OY*-ares point to the East and North,re- 
spectively. We attach to the gyropendulum rotor axis z the 
coord.inate system Ox+y*z* whose OS*-axis is directed along 
the rotor axis. Position of the coordinate system oz+y*,* 
relative to the geographical trihedxon oz+y+z+ is defined by 
angles ctt BV -?I (Fig.2). The angles a, and & determine 
the position of the gyropendulum rotor axis z relative to 

Y* the trihedron Ob+y+z+. 
The angular velocity m* of rotation of the coordinate 

system ox*y*z* rehtive to the trihedron OZ+Y*Z+ is in can- 
formfty with the vector equation (1.7) of the form 

Fig.2 
o* =a@ - mw)iH-uo+ (4.1) 

where g+ is t&e absolute angular veiocity of the geographical trihedron. 
For the projections mt* of vector eP on the axes of the coordinate system Os*Y+s+ we 

obtain the following formulas: 

(4.2) 

where 11)~ and uf are projections of vectors w and & on the axes of the coordinate system 
or+y+x+, which are defined by formulas appearing in /2,3/. 

Projections of* may also be represented in the form (see Fig.21 

% *E -&'COs uI + y;cos & sin a,, 02* = a,' i_ ~3~' fin &, oQ* = &'sin cl 4 yl* cos& 00s ccl 14.3) 

using expressions (4.2) we solve Eqs. (4.3) for the derivatives a,'. B1', yi Wd obtain 
the Eonnubs given in /2,3/ for equations of precession motion of the gyropendulum rotor aXis 
z relative to the geographical trihedxon 

(4.4) 
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and the equation 

which, after the determination of the unknown functions al(t). pl(l) from system (4.4), make 
possible the establishment of the law of motion of the coordinate System OZ*~*Z* in terms of 

angle yl. 
We attach the solid body D * to the coordinate system oz*y*a* and introduce the finite 

turn vector 8* which determines the position of body D * relative to the trihedron Oz+y+z+. 

We denote by vj(j = 0,1,2.3) the Rodrigues-Hamilton parameters that correspond to the finite 
turn vector 8*. The‘kinematic equations of the spherical motion of body D* relative to the 
trihedron OX+Y+Z+ in terms of Rodrigues-Hamilton parameters vj are 

2v,' = -(W,*vI + Ot*v* j o,*v,), 2v,' = ol*vo + O**Vf - (%*v* (4.5) 

2v; = oz*vo -/- Og*V, - o,*vg, 2v; = o,*v, + 01*v* - o,% 

when coefficients y* conform to formulas (4.2), define in the geographical coordinate system 
the gyropendulum behavior for finite angles of the rotor axis deflection from the vertical. 

Thus for the determination of angles aI and & which define the position of the gyro- 
pendulum rotor axis z relative to the geographical trihedron for arbitrary motion of its base 
over the Earth surface it is possible to solve, instead of two nonlinear differential equa- 
tions (4.4), four linear differential equations (4.5) passing from parameters vJ to mgks 

aI and & in conformity with formulas 

derived similarly to (2.1). 
In conclusion, we would point out that the inference about Liapunov stabilityofsolutions 

of Eqs. (1.9), and (2.2) and (1.8) of precession motion of the gyropendulum rotor axis relat- 
ive to the accompanying Darboux trihedron, arrived at in Sect.3, as well as those about the 
particular cases of integrability of these equations in quadratures, can be extended to Eqs. 
(4.4),and (4.5) and (4.2)of precession motion of the gyropendulum rotor axis relative to the 
geographical trihedron. 
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